Inundation toolbox api-doc
Contents
Inundation toolbox api-doc#
Arrival_times#
- inundation_toolbox.arrival_times(map_data: numpy.ndarray, time_step: numpy.timedelta64, time_unit: str = 's', arrival_threshold: float = 3, event_start: Optional[numpy.timedelta64] = None) numpy.ndarray [source]#
Computes the arrival times. This is the time-index*time_step that water_height >= threshold Works with classmaps and maps, as long as arrival_threshold corresponds to waterdepth (maps) and class (classmap).
- Parameters
map_data (np.ndarray) – map data (time, nodes)
time_step (np.timedelta64) – time step between two observations in classmap
time_unit (str) – desired output time format
arrival_threshold – value >= arrival_threshold there is inundation
- Returns
t_arrival (np.ndarray) – arrival times
rising_speeds#
- inundation_toolbox.rising_speeds(map_data: numpy.ndarray, time_step: numpy.timedelta64, time_unit: str = 's') numpy.ndarray [source]#
Computes the rising speeds. This is defined as dh/dt between two subsequent datapoints
- Parameters
map_data (np.ndarray) – filled classmap data (time, nodes)
time_step (np.timedelta64) – time step between two observations in classmap
- Returns
dh_dt (np.ndarray) – rising_speeds
height_of_mrs#
- inundation_toolbox.height_of_mrs(map_data: numpy.ndarray, dh_dt: numpy.ndarray) numpy.ndarray [source]#
Computes the water depth at maximum rising speed.
Usage example of take_along_axis and argmax. The following prints zero:
max_rs_ix = np.argmax(dh_dt, axis=0) max_rs = np.take_along_axis(dh_dt, max_rs_ix[np.newaxis, :], axis=0) print(np.sum(max_rs - np.amax(dh_dt, axis=0, keepdims=True)))
- Parameters
map_data (np.ndarray) – filled classmap data (time, nodes)
dh_dt (np.ndarray) – rising_speeds
- Returns
h_mrs (np.ndarray) – gevaarhoogte. water depth at maximum rising speed